Как сделать игрушку из бумаги своими руками

Что такое телескоп. Что такое телескоп и что в него можно увидеть

Телескоп – устройство, предназначенное для наблюдения за небесными объектами – планетами, звездами, туманностями и галактиками. Слово «телескоп» образовано от двух греческих слов, обозначающих «вдаль» и «смотрю».

Первое устройство для наблюдения за отдаленными объектами – зрительную трубу – изобрел в начале XVII в. датский оптик И. Липперсгей. Ее схема была следующей: на переднем конце трубы была укреплена двояковыпуклая линза – объектив. Проходя через объектив, свет собирается в фокусе, где получается изображение небесного тела. На другом конце трубы находится окуляр, позволяющий рассматривать изображение в увеличенном виде. Сила увеличения этого оптического прибора зависит от размеров и выпуклости объектива и окуляра.

Вскоре после изобретения трубы о ней узнал итальянский ученый Галилео Галилей. Он увлекся задачей конструирования «перспективы», как тогда называли телескоп. Сначала он соорудил трубу с трехкратным увеличением, а позже довел этот показатель до тридцатикратного.

Галилей первым использовал подзорную трубу для астрономических наблюдений. Впервые он сделал это 7 января 1610 г. Даже скромных возможностей трубы Галилея хватило для нескольких открытий.

Галилей обнаружил, что поверхность Луны неровная и там, как и на Земле, есть горы и долины. Была раскрыта тайна Млечного Пути. Итальянец обнаружил, что Галактика является не чем иным, как собранием громадного множества звезд.

Помимо этого, Галилей открыл сразу четыре спутника Юпитера, которые назвал в честь Великого герцога Тосканского Козимо II Медичи «Медичейскими звездами».

В книге «Звездный вестник» ученый рассказал о своих наблюдениях. Его открытия вызвали ожесточенную полемику. Многие считали открытия Галилея иллюзией, порожденной зрительной трубой.

Галилей продолжил свои наблюдения. Рассматривая в телескоп Сатурн, он обнаружил по обе стороны планеты пятна. Он решил, что это такие же спутники, как у Юпитера. Два года спустя, к своему недоумению, исследователь увидел эту же планету в «полном одиночестве». Он так и не смог найти объяснения загадки. Лишь полвека спустя голландец X. Гюйгенс открыл, что на самом деле это было кольцо, окружающее Сатурн.

Дальнейшие исследования звездного неба позволили Галилею совершить еще несколько открытий. Он заметил, что Венера, «подражая» Луне, меняет свой облик. Это послужило решающим доказательством того, что Венера, в соответствии с теорией Коперника, вращается вокруг Солнца.

Галилей открыл пятна на Солнце и убедился, что Солнце вращается вокруг своей оси.

Независимо от Галилея, и даже раньше него, в 1609 г. внешний лик Луны с помощью телескопа зарисовал английский математик Т. Харриот. А приоритет открытия спутников Юпитера оспаривал у итальянца немец С. Мариус.

Галилей за пропаганду идей Коперника был подвергнут суду инквизиции и публично отрекся от своих взглядов. Церковь реабилитировала его лишь в 1980 г. В том же году журналы его наблюдений заново просмотрели историки астрономии. Они установили, что зимой 1612–1613 гг. ученый наблюдал планету Нептун, правда, приняв ее за звезду.

Эстафету создания телескопов подхватил у Галилея польский астроном?наблюдатель Ян Гевелий. В 1641 г. в Гданьске на крышах трех своих домов он оборудовал обсерваторию. Создание собственных телескопов Гевелий начинал со сравнительно небольших труб длиной 2–4 м. Совершенствуя технику изготовления, он сумел довести размеры телескопов до 10–20 м. Крупнейший из телескопов Гевелия не поместился в его обсерватории, и этот инструмент пришлось установить за городом, укрепив на специальной мачте высотой в 30 м. Длина трубы этого телескопа достигала 45 м.

Гевелий, как и Галилей, использовал в качестве объектива для своих труб двояковыпуклую линзу. Такие линзовые телескопы называют телескопами?рефракторами. Доведя свои телескопы до очень больших размеров, Гевелий смог добиться довольно значительных увеличений при удовлетворительном качестве изображения. Но он не смог расширить возможности своих телескопов для наблюдений слабых объектов. Это связано с тем, что обнаружение слабых объектов требует увеличения поверхности объектива. Но создание больших линзовых телескопов было сопряжено с непреодолимыми техническими трудностями.

Астрономы смогли решить эту проблему, используя в качестве объектива вогнутые зеркала. Изготовление больших вогнутых зеркал намного проще, чем изготовление линз тех же размеров. Телескопы с зеркальными объективами получили название отражательных телескопов, или телескопов?рефлекторов.

В рефлекторе вогнутое зеркало помещается в нижнем конце трубы. Отражаясь от него, свет собирается у верхнего конца трубы, где при помощи небольшого зеркала отводится наблюдателю.

Небольшие телескопы?рефлекторы мастерил в своей домашней лаборатории еще И. Ньютон в 60–70?е годы XVII в. Первые крупные телескопы такого типа изготовил в конце XVIII в. англичанин В. Гершель. У них были огромные объективы, позволявшие наблюдать очень слабые объекты. Самый крупный из зеркальных телескопов Гершеля имел зеркало поперечником 120 см при длине трубы 12 м. Вверх?вниз он двигался при помощи блоков, а вращался вокруг своей оси на специальной платформе. В 1789 г. при помощи своего телескопа Гершель открыл первую планету Солнечной системы, названную Ураном.

У телескопов?рефлекторов тоже есть серьезные недостатки. Поле обозрения таких телескопов, как правило, мало: в него не помещается даже диск Луны. Это вызывает серьезные неудобства, особенно при фотографировании объектов большой площади, поскольку обзор требует смещения всего инструмента. Кроме того, телескопы?рефлекторы в большинстве случаев не пригодны для точных позиционных измерений.

В связи с этим, в начале XIX в. конструкторская мысль вновь обратилась к линзовым телескопам?рефракторам. Их быстрое усовершенствование произошло благодаря мастерству Й. Фраунгофера. Он соединил в объективе линзы из двух различных сортов стекла – кронгласа и флинтгласа. Оба изготавливаются из кварцевого стекла, различаясь лишь применяемыми добавками. Различные коэффициенты преломления света в этих стеклах позволяют резко ослабить окрашивание изображений – основной недостаток линзовых систем, с которым безуспешно боролся Ян Гевелий.

Фраунгофер первым научился изготавливать крупные линзовые объективы, у которых поперечники были в несколько десятков сантиметров. Ему удалось преодолеть трудности, связанные с тонкостями технологии варки стекла и охлаждения готового стеклянного диска. Диск, из которого предстоит отшлифовать объектив, должен быть сварен без пузырей и охлажден таким образом, чтобы в нем не возникло никаких напряжений. Напряжения могут привести к неравномерным изменениям формы объектива, шлифующегося с точностью до десятитысячных долей миллиметра.

Фраунгофер не только усовершенствовал оптику телескопа?рефрактора, но и превратил его в высокоточный измерительный инструмент. Его предшественникам не удалось найти удачного решения, того, как вести телескоп за звездой. Из?за суточного движения небесной сферы звезда постоянно перемещается и, двигаясь по кривой, быстро выходит из поля зрения неподвижного телескопа.

Фраунгофер наклонил ось вращения телескопа, направив ее в полюс мира. Для слежения за звездой достаточно было вращать его вокруг одной только полярной оси. Фраунгофер автоматизировал этот процесс, добавив к телескопу часовой механизм.

Фраунгофер уравновесил все подвижные части телескопа. Несмотря на большой вес, они повинуются легкому нажиму.

В 1824 г. Фраунгофер изготовил первоклассный телескоп для обсерватории в Дерпте.

Во второй половине XIX в. лучшие телескопы изготавливал американский оптикА. Кларк. В 1885 г. он изготовил для пулковского телескопа?рефрактора крупнейший в то время объектив диаметром 76 см. В 1888 г. на горе Гамильтон близ Сан?Франциско был сооружен телескоп с диаметром объектива 92 см работы Кларка. Вскоре на крыше обсерватории Чикагского университета установили телескоп с объективом в 102 см, который также сделал Кларк.

По конструкции все вышеперечисленные телескопы были повторением телескопов Фраунгофера. Они легко управлялись, но из?за поглощения света в стеклах объектива и прогибания труб размеры этих телескопов оказались предельными для конструкций такого рода.

Внимание астрономов?конструкторов вновь обратилось к телескопам?рефлекторам.

В 1919 г. в Калифорнии в Маунт?Вилсоне вступил в строй телескоп?рефлектор с поперечником зеркала 2,5 м. Опыт его изготовления был учтен в проекте 5?метрового телескопа, на сооружение которого ушло четверть века. Он вступил в строй в 1949 г. в обсерватории Маунт?Паломар.

После Великой Отечественной войны в Крымской астрофизической обсерватории Академии наук СССР был введен в строй самый крупный в Европе телескоп?рефлектор с поперечником зеркала 2,6 м. Накопленный опыт позволил советским оптикам построить крупнейший в мире телескоп?рефлектор с поперечником зеркала 6 м. Его 24?метровая труба весит 300 т, а зеркало – 42 т. Зеркало телескопа в любом положении должно находиться в состоянии невесомости. Оно лежит на 60 подпорных точках. Три из них несущие, остальные – опорные.

Ведение инструмента за звездами осуществляет ЭВМ. Она рассчитывает смещение звезд, внося поправки на влияние рефракции и изгиб трубы, и поворачивает телескоп с необходимой скоростью. Масса подвижной части телескопа составляет 650 т.

В отличие от парагалактической монтировки, применявшейся Фраунгофером, в этом телескопе применена азимутальная монтировка. Сам телескоп называется БТА – большой телескоп азимутальный.

После долгих поисков места телескоп БТА был установлен в предгорьях Северного Кавказа близ станицы Зеленчукская на высоте 2070 м и вступил в строй в 1975 году.

В 1931 г. американец К. Янский при помощи антенны, предназначенной для исследования грозовых радиопомех, зарегистрировал радиоизлучение космического происхождения (от Млечного Пути). Длина его волны составляла 14,6 м.

В 1937 г. в США Г. Ребер построил первый радиотелескоп для исследования космического радиоизлучения – рефлектор диаметром 9,5 м.

Важнейшей характеристикой оптических приборов является разрешающая способность. Она равна наименьшему углу, под которым два объекта различаются данным прибором как самостоятельные. Для человеческого глаза в обычных условиях разрешающая способность составляет около Г. Разрешающая способность телескопа увеличивается с увеличением диаметра телескопа и уменьшением длины волны принимаемого излучения. Для оптических телескопов этот показатель ограничен атмосферой и не превышает 0,3 м.

В радиоастрономии этот показатель долгие годы был гораздо ниже, поскольку длина радиоволн в десятки тысяч раз больше, чем длина волн видимого света. В связи с этим возникла необходимость в постройке радиотелескопов с огромными объективами – параболоидами. Но разрешение радиотелескопов долгое время оставалось недостаточным. Оно составляло минуты и десятки минут. Это не давало возможности изучать тонкую структуру наблюдаемых на небе объектов и даже определять их протяженность.

Эта трудность была преодолена сооружением радиоинтерферометров. Они представляют собой два радиотелескопа, отнесенных друг от друга на сотни и тысячи километров. Сравнение одновременных наблюдений на обоих телескопах дает возможность добиться разрешающей способности до 0,00Г. Первый радиоинтерферометр был построен в Австралии в 1948 г. В 1967 г. были проведены первые наблюдения на интерферометрах с независимой записью сигналов и сверхбольшими базами.

В 1953 г. был сооружен первый крестообразный радиотелескоп. Полноповоротный радиотелескоп с диаметром параболоида 76 м был сооружен в английской обсерватории Джодрелл Бэнк. Позже в Эффельсберге (ФРГ), в радиотехническом институте им. М. Планка был построен телескоп с диаметром зеркала 100 м.

Крупнейший неподвижный радиотелескоп с неподвижной сферической чашей диаметром 300 м был построен в специально подготовленном кратере вулкана Аресибо (Пуэрто?Рико).

придуманы людьми несколько столетий назад, однако их точное происхождение пока остаётся предметом спора учёных. Достоверно известно, что в начале 17 века, а именно в 1608 году, голландский изготовитель очков Ханс Липперсхей (Hans Lipperhey) подал заявку на патент зрительной трубы, по сути представлявшей собой примитивный . Липперсхей обычно считается изобретателем телескопа, но есть вероятность, что он был не первым человеком, догадавшимся, что труба с вогнутой линзой на одном конце и выпуклой линзой на другом может увеличивать далёкие объекты.

Рефрактор Галилея (1609г)

Несмотря на то, что был изобретён другим человеком, Галилео Галилей (Galileo Galilei) усовершенствовал его, значительно увеличив его возможности. Помимо этого, Галилей первым понял, что можно использовать не только для зрительного приближения далёких объектов на Земле, но и для изучения неба.

На картинке изображён Галилей, демонстрирующий один из своих телескопов правителям Венеции в августе 1609г. В течение нескольких лет после этого Галилей сделал ряд крупных наблюдений, в том числе открыл четыре крупных спутника Юпитера.

Отражающий Ньютона (1668г)


Вместо стеклянных линз, преломляющих лучи света, Исаак Ньютон (Isaak Newton) использовал изогнутые зеркала, также способные собирать или рассеивать свет в зависимости от формы. Конструкция на основе зеркал позволяет увеличивать объекты намного сильнее, чем это возможно с линзами. Кроме того, использование зеркал решает проблему хроматической аберрации, явления, из-за которого разные части спектра преломляются по-разному, что вызывает искажение изображения.

Однако из-за плохого качества зеркала первый отражающий Ньютона довольно сильно искажал и затемнял изображение. Отражающие стали популярны среди астрономов более чем через сто лет, когда появились зеркала, лучше отшлифованные и поглощающие меньше света.

Гринвичская королевская обсерватория (Royal Greenwich Observatory) с 1675 года является основной астрономической организации Великобритании. Она была организована королём Карлом II для навигационных нужд и сопутствующих исследований и размещена в Гринвиче, предместье Лондона. В то время Англия была крупнейшей морской державой, которой были необходимы возможно более точные инструменты для определения положения корабля, навигации на море, картографии и т.д. Меридиан, проходящий через Гринвич, решили считать нулевым в Великобритании и её колониях, а с 1884 года от него исчисляется поясное время во всём мире.

Здесь, в Гринвичской обсерватории, в 1676г приступил к наблюдениям за звездами и Луной первый королевский астроном Джон Флемстид (John Flamsteed). К концу XIX века Гринвичская обсерватория имела 76см рефлектор, 71см, 66см и 33см рефракторы и множество вспомогательных инструментов. В 1953г часть обсерватории была перенесена на 70км к юго-западу, в позднесредневековый замок Хёрстмонсо.

Великий русский ученый М.В.Ломоносов не только изобрел и построил более десятка принципиально новых оптических приборов, но и создал русскую школу научной и прикладной оптики. Среди его изобретений был , позволяющий видеть ночью и названный Ломоносовым "ночезрительной трубой", и новый тип отражательного телескопа, который позднее был использован Гершелем в его знаменитом телескопе.

Под руководством Ломоносова в 1761г оптик Иван Иванович Беляев изготовил "небесную трубу" длиной больше 12м, с большими металлическими зеркалами и линзой-объективом. Эта зрительная труба, будучи неподвижной, позволяла наблюдать за двигающимися звёздами и планетами. Позднее, в 1764г, тот же Беляев по чертежам Ломоносова сделал три трубы, предназначенные для сумеречного времени. Эти трубы имели латунный корпус и по четыре стекла. До того "ночезрительные трубы" считались невозможными, и идея Ломоносова высмеивалась в научных кругах.


Первый собственный Джон Гершель (John Frederick William Herschel) построил в 1774г, взяв за основу идеи и расчёты Ломоносова (по другим данным, Гершель и Ломоносов независимо друг от друга придумали оптические системы с одинаковыми принципами работы). Гершель несколько раз улучшал конструкцию телескопа, построив в итоге 20-футовый (6м) . Это был довольно громоздкий инструмент, для обслуживания которого требовалось четыре рабочих. На протяжении нескольких десятилетий этот оставался крупнейшим в мире.

Гершель составил огромный каталог звёзд и туманностей, произвёл ценные наблюдения над планетами Солнечной системы, в частности, в 1781г подтвердил, что Уран является планетой, а не звездой, а также открыл два спутника Урана и два спутника Сатурна. Сын Гершеля также активно занимался небесной оптикой и провёл несколько лет в Южной Африке, где построил аналогичный для изучения неба Южного полушария.

Пулковская обсерватория (полное официальное название "Главная (Пулковская) астрономическая обсерватория Российской академии наук", сокращённое - ГАО РАН) в настоящее время является основной астрономической обсерваторией РАН. Она расположена в 19км к югу от Санкт-Петербурга на Пулковских высотах.

Торжественное открытие обсерватории, созданной по решению Петербургской Академии наук, состоялось 7 (19) августа 1839г. Созданием обсерватории руководил выдающийся учёный-астроном Василий Яковлевич Струве, который и стал её первым директором. В Пулковской обсерватории находился один из самых больших на тот момент в мире рефракторов (38см). Как и Гринвичская, Пулковская обсерватория предназначалась для развития навигации и для исследования неба, геодезических измерений и т.д. В 1847 году директор Гринвичской обсерватории написал, что ни один астроном не может считать себя астрономом, если он не познакомился с Пулковской обсерваторией. До 1884 года все географические карты России имели точкой отсчёта Пулковский меридиан. Обсерватория, практически разрушенная во время Великой Отечественной войны, была восстановлена и вновь открыта в 1954г.

На сегодняшний день научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений.

Крымская астрофизическая обсерватория была основана в начале XX века возле поселка Симеиз на горе Кошка, как частная обсерватория любителя астрономии Николая Мальцова. В 1912 году она была передана в дар Пулковской обсерватории, после чего стала превращаться в полноценный научный центр, проводящий фотометрию звёзд и малых планет. В 1926 году в Крымской обсерватории был установлен метровый английский рефлектор, один из крупнейших рефракторов того времени. Крымская обсерватория, как и Пулковская, была практически полностью уничтожена во время Второй Мировой войны, позднее восстановлена и усовершенствована.

Сейчас Крымская обсерватория представляет собой развитый научно-исследовательский комплекс, в котором ведутся исследования по направлениям Физика звёзд и галактик, Физика Солнца, Радиоастрономия, Гамма-астрономия, Экспериментальная астрофизика, Оптическое производство. Сотрудниками Крымской обсерватории открыто около 1300 астероидов и 3 кометы. В настоящее время обсерватория находится под угрозой уничтожения из-за начавшейся в марте 2009 года противозаконной застройки ее территории коттеджным поселком с развлекательными комплексами.

200-дюймовый Хейла (1948г)


Джордж Эллери Хейл (George Ellery Hale), которого вполне можно назвать фанатом астрономии, в 1908г построил 60" на горе Вильсон, к северо-востоку от Лос-Анджелеса. в 1917г там же был установлен 100" Вильсона, который в течение 30 лет был самым большим телескопом в мире. Но Хейлу не хватало 100" телескопа, он хотел построить раза в два больше размером. В 1928г Хейл начал продвигать идею создания 200" телескопа. Он сумел заручиться финансовой поддержкой чикагского миллионера Чарлза Йеркса и на горе Паломар, к югу от Лос-Анджелеса, был построен 200" (5.1м) Хейла. Его строительство было завершено в 1948г, через 10 лет после смерти Хейла. Этот на протяжении 10 лет оставался крупнейшим в мире.

В телескопе Хейла использованы гигантские зеркала, изготовленные из специального нового стекла Pyrex, которое не меняет форму и размеры из-за колебаний температуры. Зеркало в нижней части трубы телескопа отражает свет звёзд, кабина наблюдателя находится наверху. Дополнительное зеркало может отражать свет через отверстие в центре основного зеркала.

Космический Хаббл (Hubble, 1990г)

Телескоп Хаббл был назван в честь известного астронома Эдвина Хаббла (Edwin Powell Hubble). Этот учёный оказал огромное влияние на проблему определения размеров нашей Вселенной и сформулировал закон: "галактики разлетаются со скоростью пропорциональной расстоянию между ними". Кстати, многие наблюдения Хаббл проводил на телескопах Хейла.

Запуск телескопа Хаббл, который состоялся в апреле 1990г, был настоящим прорывом для астрономии. Впервые был выведен за границу атмосферы и избавлен от искажений, возникающих из-за прохождения света через земную атмосферу. С помощью телескопа Хаббл более точно определены темпы расширения Вселенной, открыты многие новые звёзды и туманности, открыта тёмная материя, до того существовавшая только в расчётах отдельных физиков. Хаббл стал первым космическим объектом искусственного происхождения, который предназначен для проведения профилактики и текущего ремонта прямо в космосе. Пятый и пока последний ремонт Хаббла был проведён 11 мая 2009 года, следующий ремонт ориентировочно будет в 2014 году.

WMAP (Wilkinson Microwave Anisotropy Probe, 2001г)

WMAP представляет собой космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Строго говоря, это не , а исследовательский спутник. С помощью WMAP была создана первая чёткая карта неба в микроволновом диапазоне, уточнён возраст Вселенной (13.7млрд лет), измерен состав Вселенной (по крайней мере ближайшего участка). Примерно 72% Вселенной занимает тёмная энергия, 23% ─ тёмная материя, и только 5% обычная материя.

14 мая 2009 года был запущен преемник аппарата WMAP, спутник Планк (Planck). Теоретически чувствительность приборов Планка в 10 раз выше, а угловое разрешение в 3 раза выше, чем у WMAP.

Телескоп Свифт (Swift, 2004г)

Орбитальный рентгеновский Свифт был разработан для изучения быстрых космических явлений, называемых гамма-всплесками, которые, предположительно, возникают при смерти массивной звезды или объединении двух плотных объектов, таких как нейтронные звёзды. До запуска Свифта, состоявшегося в 2004 году, астрономам требовалось около 6 часов, чтобы после фиксации гамма-всплеска регистрировать все его параметры. Свифт способен начать записывать все данные о гамма-потоке не более чем через минуту после фиксации всплеска. Свифт уже зафиксировал данные сотен гамма-всплесков, а в апреле 2009 года обнаружил поток гамма-излучения, который дошёл до нас от наиболее отдалённого космического объекта из всех зафиксированных до сих пор.

Благодарим ресурсы NewScientist , Astronomer.ru , Wikipedia за предоставленную информацию.

За астрономическими объектами: планетами, кометами, Солнцем, Луной и условно говоря "туманностями" (звездные скопления, галактики, облака космического газа и т.д.). Как правило, телескоп состоит из собственно трубы (оптического инструмента), монтировки (штатива - устройства наведения трубы и сопровождения объектов), а также массы дополнительных приспособлений (фильтров, гидов, фотоаппаратуры).

Наблюдения бывают визуальными (глазом) и фотографическими (с использованием прочих фотоприемников - в том числе и цифровых). Соответственно, телескопы бывают визуальными (для визуальных наблюдений), астрографами (для фотографирования) и универсальными (способными обеспечивать более-менее и те, и другие наблюдения). Новички обычно начинают с визуальных наблюдений, фотографические требуют более продвинутой техники, больше знаний, оборудования и времени.

Труба телескопа (труба телескопа в сборе или далее ТТС, что близка к аббревиатуре часто употребляемой в англоязычных источниках - OTA - optical telescope assemble) включает в себя собственно трубу (иногда, впрочем, совсем и не похожую на трубу), которая служит базой для присоединения объектива телескопа, фокусера, окулярного узла, искателя и крепежа для присоединения к монтировке. ТТС обеспечивает главную функцию телескопа - возможность наблюдений далеких предметов с большим увеличением.

Объектив телескопа - главная часть ТТС - строит изображение астрономических объектов в своей фокальной плоскости, что позволяет рассматривать его при помощи окуляра (своего рода лупы), фиксировать на фотоприемнике (фото-, веб- и видеокамеру, специализированные астрономические камеры). Объективы могут состоять из линз и/или зеркал. Главные характеристики объектива (и всего телескопа): фокусное расстояние f" (оно определяет масштаб изображения в фокальной плоскости), апертура или диаметр объектива D. Чем апертура больше - тем больше собирает света телескоп и меньше вредное влияние дифракции на качество изображения, тем большее увеличение можно использовать при наблюдениях. Есть еще относительное отверстие 1/k =D/f" и относительное фокусное расстояние k=f"/D. Чем относительное отверстие больше, тем меньшие выдержки (экспозиции) можно использовать при фотографировании, но при этом несколько выше требования к окулярам в визуальном режиме.

Качество изображения, которое строит объектив кроме его апертуры, определяется еще и его остаточными аберрациями. Эти аберрации являются как следствием выбранной для объектива оптической схемы (например кома телескопа Ньютона, вторичный хроматизм рефрактора, сферохроматизм Шмидт-Кассегренов, сферическая аберрация 5-го порядка Максутова-Кассегрена и т.д.), так и результатом погрешностей изготовления/сборки оптики ("завал" на краю зеркальных объективов, оптическая неоднородность линз и т.д.), или неизбежной механической разъюстировкой компонентов объектива в процессе эксплуатации (сдвиг линз и зеркал со своего положенного места). Как правило, линзовая оптика (рефракторы) меньше склонна к разъюстировкам.

Что называется окулярами и для чего они нужны?

При визуальных наблюдениях (глазом) наблюдатель использует больший или меньший набор окуляров. Это своего рода лупы, которые позволяют наблюдателю рассматривать изображения построенные объективом телескопа. Чем меньше фокусное расстояние окуляра f"ок, тем большее увеличение он дает с данным объективом. Увеличение можно рассчитать по простой формуле отношений фокусных расстояний объектива и окуляра: Г = f"об/f"ок. Важнейшей характеристикой окуляра после фокусного расстояния является величина поля зрения, которая определяет то, каким широким представляется наблюдателю доступный для рассматривания круг изображения. Обычные окуляры имеют поле зрения 40-55 градусов, широкоугольные 55-65, сверхширокоугольные 65-80 ультраширокоугольные от 80 и выше. Окуляры принято характеризовать еще и выносом выходного зрачка - тем расстоянием от глазной линзы, на котором наблюдателю придется расположить свой глаз, чтобы все доступное поле зрения было видно одновременно. Чем эта величина больше, тем выше комфорт при наблюдениях, больше возможность наблюдать в очках и использовать фотографическую и видеоаппаратуру для фиксации того, что видно в окуляр.

Так же как и объективы, окуляры имеют собственные оптические аберрации и соответственно могут ухудшать изображение. Как правило, аберрации короткофокусных окуляров менее критичны в плане влияния на вачество изображения, а вот к качеству коррекции длиннофокусных и особенно широкоугольных следует применять повышенные требования. Обычно аберрации тем меньше, чем больше в окуляре линз, меньше угловое поле зрения и вынос выходного зрачка. Сложные окуляры (много линз, меньше аберрации, больше поле зрения и вынос) особенно требовательны к просветляющим покрытиям, которые уменьшают бликование поверхностей линз. Для сверхширокоугольных окуляров часто характерна высокая чувствительность видимости/невидимости всего поля зрения или его части к небольшим сдвигам глаза наблюдателя (фрагментарное срезание поля зрения).

Для окуляра важными деталями являются наглазники, которые защищают глаз наблюдателя от постороннего света и позволяют верно зафиксировать положение глаза относительно глазной линзы. Обрезинивание корпуса окуляра добавляет удобств при наблюдениях, герметизирует его внутренность и изолирует металл (что важно при наблюдениях в мороз).

Если при использовании обычных окуляров с фиксированным фокусным расстоянием, изменение увеличения телескопа возможна только путем замены одного окуляра на другой, то использование панкратических (zoom) окуляров позволяет перекрывать все или часть увеличений без смены окуляра. Но за это удобство приходится платить меньшим полем зрения и обычно несколько худшим качеством изображения.

Окуляры и прочие принадлежности вставляют в окулярную трубку ТТС которая обычно имеет стандартный внутренний диаметр. Наиболее распространены стандарты 1.25" (чуть менее 32 мм) и 2" (около 52 мм). Существуют и переходники (адаптеры), которые позволяют использовать на данном ТТС окуляры разных стандартов (например, от 2" к 1.25"). Понятно, что 2" стандарт предоставляет наблюдателю большую свободу выбора и больший размер поля зрения доступного для наблюдения и фотографирования.

Для смены увеличения и возможности наблюдать с комфортным выносом выходного зрачка служат линзы Барлоу (отрицательная линза в соответствующей оправе). Будучи расположенной перед окуляром они увеличивают его "кратность" вдвое-трое. Собственно, "кратность" линз Барлоу и является их главной потребительской характеристикой. Обычны линзы Барлоу высокой кратности 3-4х вносят слишком большие искажения в работу окуляра, что приводит к виньетированию (затенению) внешней части поля зрения и/или ухудшению качества изображения. Как и окуляры, линзы Барлоу различаются по посадочному стандарту 1.25" и 2". Так называемые "апохроматические" линзы Барлоу состоят из трех и более линз и имеют улучшенное качество изображения по полю зрения, что важно особенно при использовании в светосильных телескопах. Разновидность линзы Барлоу - телеэкстендеры используются в астрофотографии, для получения большего масштаба изображения и ровного поля зрения.

Фокусер

Наблюдатель использует фокусер, который обеспечивает механический сдвиг вдоль оптической оси одного из компонентов объектива или окулярной трубки ТТС, для фокусировки изображений астрономических объектов под глаз наблюдателя (например по причине его близорукости), для компенсации различий в положении фокальных плоскостей различных окуляров (фотоприемников), ну и для фокусировки на земные (относительно близкие) объекты. Окуляры и проч. окулярная оптика, которые не требуют перефокусировки при их смене, называются парфокальными. Фокусер характеризуется ходом (диапазоном перефокусировки) и чувствительностью (тем насколько точно можно управлять сдвигом фокальной плоскости объектива). Как правило, фокусеры с большим ходом мало чувствительны, но позволяют телескопу перефокусироваться в большом диапазоне (в том числе и на довольно близкие земные предметы). Чувствительные фокусеры имеют небольшой ход. Двухскоростные фокусеры имеют и достаточный ход, и удовлетворительную чувствительность. Простые реечные фокусеры обычно имеют заметный сдвиг поля зрения при перемене направления фокусировки (focuser shift). Лучшее качество фокусировки обеспечивают фокусеры Крейфорда, но они не столь грузоподъемны (могут не удержать тяжелое окулярное оборудование).

Искатель

Искатель - важный элемент ТТС. Это своего рода прицел, он позволяет наводить трубу телескопа на выбранный объект наблюдений. При небольших увеличениях искатель может быть просто механическим визиром ("мушкой"). Но обычно это оптическое устройство. Однократный коллиматорный визир со светодиодной маркой (ред-дот, телрад) очень оперативен и прост в использовании, но требует частых ориентиров (хорошего черного неба с обилием звезд, которые могут быть использованы в качестве "опорных" при наведении). Оптический искатель - это просто труба небольшого (3-6-8 крат) увеличения с перекрестем (которое может иметь регулируемую по яркости подсветку, что очень удобно). Оптический искатель очень полезен, так как он увеличивает число видимых глазом звезд и позволяет использовать в качестве опорных при наведении не столь яркие. Визирная ось любого искателя должна быть тщательно согласована с визирной осью телескопа, для этого служат специальные регулировочные винты на стойке искателя.

Прочие принадлежности и комплектующие к телескопу

При наблюдениях в рефракторы, Шмидт- и Максутов- и прочие Касегрены невозможно обойтись без так называемых диагоналей (не стоит их путать с диагональным зеркалом в схеме Ньютона). Это окулярные оптические узлы, которые ломают визирную ось на 90 или 45 градусов для удобного положения головы наблюдателя. Иногда эти диагонали называют "звездными" (star-diagonal). Диагонали могут быть выполнены на основе зеркала или призмы. Призмы с "крышей" позволяют получать так называемое прямое изображение ("верх" - сверху, "право" - справа), но при этом довольно дороги, а в 2" исполнении еще и тяжелы. Зеркала легче, но при обычном покрытии приводят к дополнительным потерям света (порядка 15%). Диагональные зеркала с диэлектрическим покрытием призваны уменьшить потери света (до 1%), но довольно нетехнологичны, что приводит к их высокой стоимости. Так же как и окуляры диагонали могут быть 1.25" и 2" стандарта.

ТТС может быть также оборудована системой принудительной вентиляции - для ускорения теплового равновесия трубы с окружающим воздухом во время наблюдения (обычно это просто вентилятор), без чего объективам с зеркальными элементами трудно расчитывать на качественное изображение. Материал трубы важен по тем же соображениям. Металл очень быстро (но и предсказуемо) реагирует на смену окружающей температуры, некоторые композитные материалы на основе углеволокна почти не меняют свои размеры при перепадах температуры и т.д.

Для защиты передней линзы телескопа от росы и инея служат пассивные и активные противоросники. Пассивные противоросник - просто съемная или постоянная бленда, которая расположена перед объективом. Чем бленда длиннее (1.5-2 диаметра объектива), тем она эффективнее для борьбы с росой. Важен и материал - неметалл тут лучше. Однако для гарантированного предотвращения выпадения росы требуются активные противоросники со слабым электрическим подогревом оправы передней линзы объектива.

При наблюдении Солнца перед объективом размещают зеркальный фильтр для блокировки большей части излучения (1:100000). При наблюдениях планет в юбку окуляра (со стороны противоположно его глазной линзе) по стандартной резьбе вкручивают цветные фильтры. При наблюдениях диффузных туманностей там-же располагают узкополосые интерференционные так называемые "дип-скай" фильтры (OIII, UHC, H-beta, H-alfa, LPR и т.п.), которые увеличивают контраст некоторых туманных объектов и более или менее эффективно борются с искусственной и естественной засветкой неба.

Важными принадлежностями астрографа и в меньшей степени визуального телескопа являются оптические корректоры и присоединительные адаптеры. Это, к примеру, корректор комы для Ньютона, который устраняет главный дефект этой схемы - внеосевую кому или неизопланатизм, что делает качество изображения светосильных Ньютонов много лучше. К сожалению, такие корректоры не свободны от собственных, в том числе и хроматических, аберраций. Это и корректоры вторичного хроматизма для ахроматов повышающие качество их изображения почти до апохроматического. Это и полеспрямители-корректоры для превращения рефраторов и Шмидт-Кассегренов в астрографы. В эту же категорию можно отнести компрессоры, которые повышают относительное отверстие кассегреновских схем (в основном Шмидт-Кассегренов) до 1:6.3 и даже более.

Кроме этого, совместно с телескопом используются и более экзотичные принадлежности ТТС: флип-зеркала (соединение визуального и фотографического канала наблюдения), солнечные призмы, клинья, спектральные приборы, гиды (дополнительная труба большого увеличения для автоматической или ручной компенсации погрешностей ведения монтировки), внеосевые гиды (для гидирования без использования дополнительной трубы), окуляры с измерительной сеткой и много другое.

ТТС обычно имеет посадочные отверстия кдля крепления дополнительной аппаратуры (гиды, фотоаппараты) и снабжается крепежными устройствами для установки на монтировке. Это могут быть кольца и так называемый "ласточкин хвост". При самостоятельной комплектации телескопа важно, чтобы стандарт крепления ТТС и монтировки совпадал.

Монтировка телескопа

Монтировка телескопа обеспечивает наведение его ТТС на астрономические объекты, фиксацию наведения, уверенное и точное сопровождение вслед за суточным вращением небесной сферы, удобное для наблюдателя расположение окуляра/фотоприемника. Монтировка может быть экваториальной (главная ее ось расположена параллельно оси вращения земли - под углом к горизонту равном широте наблюдения), или азимутальной, когда главная ось расположена вертикально. Экваториальные монтировки обеспечивают простое сопровождение астрономических объектов (вращением вокруг одной полярной или часовой оси). Азимутальные монтировки компактнее, понятнее в использовании (в том числе и по земным объектам) и дешевле (монтировка Добсона выглядит просто как перевернутая табуретка). Практически все азимутальные и многие экваториальные монтировки имеют симметричную вилочную конструкцию (труба довольно жестко крепится между перьями ее вилки). Самая распространенная немецкая монтировка - несимметричная. ТТС на ней уравновешивается противовесом, который располагается на оси склонений. Немецкая монтировка очень универсальна (на нее можно "повесить" разные по размеру ТТС), но более тяжелая и габаритная, по сравнению с вилочной.

ТТС при установке в монтировку требует баллансировки - чтобы при отпущенных тормозах осей труба при любом положении оставалась в безразличном равновесии. Это достигается продольными смещениями ТТС в ее креплении к монтировке (вдоль оси трубы), разворотами трубы в хомутах (кольцах), подбором массы противовеса (если он есть) или его смещениями вдоль оси склонения. В случае правильно балансировки механика монтировки испытывает наименьшие нагрузки, работает точнее, обеспечивая более стабильный результат сопровождения/наведения.

В самом простом случае наведение телескопа осуществляется вручную. Отжимаются тормоза (если они есть) по обеим осям монтировки и труба наводится наблюдателем, который при этом смотрит в искатель, стараясь совместить объект (или ближайший к нему видимый ориентир) с визиром или перекрестьем искателя. Если есть ключи (маховички) точного наведения, то тормоза зажимаются и наблюдатель уже наводится поточнее используя эти ключи, наблюдая через поисковый окуляр телескопа (с максимальным полем зрения). Возможно также наведение по координатным кругам монтировки, но это довольно хлопотно и неточно. Обычно такой метод применяют при дневных наблюдениях Венеры и Меркурия.

Для того, чтобы астрономический объект вследствие суточного вращения Земли не покинул поле зрения телескопа (со скоростью 15 угловых минут за одну минуту времени на небесном экваторе) монтировке требуется часовое сопровождение. Оно обеспечивается или вручную наблюдателем (ключем/маховичком точного ведения вокруг поляной оси), или "часовиком" - мотором полярной оси. Привод полярной оси состоит из электродвигателя, червячной передачи, редуктора и электронной схемы синхронизации скорости вращения. Часто монтировки выпускают с опциональным часовым приводом - его можно докупить потом. Часовой привод необходим для фотографических наблюдений и весьма полезен для комфортабельных визуальных наблюдений, особенно групповых и с большими увеличениями.

Более продвинутым вариантом является монтировка с электроприводами по обеим осям. Наблюдатель получает возможность осуществлять наведение просто с кнопочного пульта, который к тому же может отображать текущие координаты объекта, на которые наведена ТТС. Иногда такая система наведения дублируется возможностью ручного наведения (что надежнее, если вдруг сядут батарейки), иногда - нет. Такие компьютеризированные пульты позволяют наводиться с разными скоростями, сопровождать объект со звездной, лунной или солнечной скоростью, производить тонкую коррекцию положения оси визирования, например при гидировании. Важными опциями таких систем при астрофотографии является возможность подключения систем автогидирования (при наличие соответствующих интерфейсов).

Вершиной компьютеризованной монтировки является система go-to, когда пульт не только позволяет навести телескоп на любую точку небесной сферы, но и содержит базу данных объектов наблюдения - остается только выбирать заинтересовавший из списка и нажать "ОК", что исключает процедуру ручного наведения и ориентации на небе. Для того, чтобы система go-to заработала, требуется произвести предварительную процедуру привязки монтировки к горизонту, направлению на север, задать точное время и координаты. Блок с приемником GPS, если он установлен на компьютере монтировки, выполняет две последние операции самостоятельно. Ориентация (alignment) в таком случае сводится в уточнению наблюдателем положения в окуляре двух-трех выбранных компьютером звезд привязки.

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Ханс Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

Энциклопедичный YouTube

    1 / 2

    МКС в Телескоп и Кино с МКС - Большая Разница, Плоская Земля

    Телескоп и микроскоп обучающая игрушка / Подарок ребенку / Sekretmastera рекомендует

Субтитры

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1608 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано, в силу того что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г. Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи датируемых 1509-м годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп и получил новые научные данные стал Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея , показанном на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом . Телескоп фокусируется при помощи фокусера (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется сферическое зеркало , а линза , система линз или мениск служит для компенсации аберраций .

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы, отличающиеся конструктивно от традиционных звездных телескопов.

Радиотелескопы

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолетах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но по другой причине. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см - 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут). Однако, объединив два радиотелескопа в радиоинтерферометр , можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра ) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии

Слово «телескоп» является производным от двух греческих слов, в переводе на русский язык означающих «далекий» и «наблюдать» .

Телескопом называют специальный оптический прибор, позволяющий приближать очень удаленные предметы, делать их отчетливо видимыми человеческому глазу. Для того чтобы такое увеличение было возможно, используют мощные линзы.

Кто придумал телескоп?

Считается, что первым использовать линзы для приближения удаленных предметов догадался ученый Галилео Галилей. В 1610-м году он сконструировал телескоп, через который разглядел кратеры на Луне, спутники Юпитера и прочие интересные детали, расположенные на космическом расстоянии. Но вместе с тем, при раскопках Трои археологи нашли хрустальные линзы, и это значит – не исключено, что умением приближать предметы люди обладали и раньше.

Обычно телескопы устанавливают – специальных сооружениях, предназначенных для наблюдений за различными явлениями природы. Обсерватории, имеющие вращающийся купол и расположенные в основном на возвышенностях, оснащают целыми комплексами телескопов.

Телескопы и инновации

Чем дальше шло развитие астрономии и прочих наук, тем совершеннее становились телескопы. Объекты стало возможно изучать в электромагнитном спектре, при помощи сложных систем детекторов и датчиков. Такое оборудование работает в различных диапазонах волн.



Сегодня есть телескопы, работающие в рентген-диапазоне и радио-диапазоне. Все эти телескопы кардинально отличаются друг от друга, но при этом имеют одну общую функцию: они дают человеку возможность детально изучать объекты, расположенные на очень далеком расстоянии.

Современные телескопы (точнее, радиотелескопы) – это мощное оборудование, которое анализирует и накапливает электромагнитное излучение удаленного объекта и направляет его в фокус. А уже там образуется увеличенное изображение объекта или формируется усиленный сигнал, позволяющий детально рассмотреть изучаемый объект. Космос также можно исследовать при помощи космических тепловизоров, которые передают изображение поверхностей удаленных объектов в инфракрасном диапазоне.

Наверное, самый знаменитый телескоп на планете – космический телескоп «Хаббл». Это инновационное оборудование расположено на орбите Земли и представляет собой скорее космическую обсерваторию. Телескоп был назван в честь астронома из США Эдвина Хаббла. Запустили «Хаббл» на орбиту в 1990-м году.

В течение последующих пятнадцати лет орбитальный телескоп получил более миллиона изображений двадцати двух тысяч космических тел, в том числе галактик, планет, звезд и туманностей. Уникальный телескоп делал снимки и передавал их на Землю.

Типы телескопов

Оптические телескопы могут работать с разными типами фокусирующего элемента. Соответственно, их делят на рефракторы (линза) и рефлекторы (зеркало).



Телескоп-рефрактор имеет объектив на передней стороне трубы, в задней части – окуляр. Объектив такого телескопа – это обычно составная линза из нескольких элементов с большим фокусным расстоянием. Самый большой в мире рефрактор имеет линзу диаметром 101 см.

В рефлекторе вместо объектива предусмотрено вогнутое зеркало, которое расположено в задней части трубы. Рефлекторными являются все большие астрономические телескопы. Рефлекторами пользуются и любители – это оборудование обходится не так дорого, как рефрактор, и собрать его можно своими силами.

В таком телескопе свет собирается в точке перед первичным зеркалом (первичным фокусом), а затем посредством вторичного зеркала направляется к более удобному для работы месту. Различают несколько общепринятых систем фокусировки: ньютоновский фокус, кассегреновский фокус, фокус Куде, фокус Несмита.

В больших телескопах наблюдатель может работать в первичном фокусе в специальной кабине, установленной в главной трубе. Многоцелевые профессиональные телескопы конструируют таким образом, чтобы наблюдатель мог выбирать фокус. Ньютоновский фокус используется только в любительских оптических телескопах.

Первичные зеркала в рефлекторах обычно изготавливают из стекла или керамики, которая не реагирует на перепады температуры. Поверхность зеркала обрабатывают до получения сферической или параболической формы.



Для получения отражательных свойств на поверхность наносится тонкий слой алюминия. По-латыни «зеркальный» звучит как «speculum», поэтому для обозначения отражательного телескопа до сих пор иногда используют сокращение «spec».

Лучшие статьи по теме